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Abstract. In a recent work, we introduced the concept of convex extensions for lower semi-continuous
functions and studied their properties. In this work, we present new techniques for constructing
convex and concave envelopes of nonlinear functions using the theory of convex extensions. In
particular, we develop the convex envelope and concave envelope of z = x/y over a hypercube. We
show that the convex envelope is strictly tighter than previously known convex underestimators of
x/y. We then propose a new relaxation technique for fractional programs which includes the derived
envelopes. The resulting relaxation is shown to be a semidefinite program. Finally, we derive the
convex envelope for a class of functions of the type f (x, y) over a hypercube under the assumption
that f is concave in x and convex in y.
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1. Introduction

This paper presents new techniques for developing convex envelopes of nonlinear
functions. These techniques are first presented in the context of fractional programs
where a new relaxation is developed for nonlinear programs modeled using frac-
tional terms. In the later part of the paper, we present some generalizations and
applications of the proposed approach to other nonlinear functions.

Fractional programs have been the subject of numerous research papers [6, 10,
11, 15, 21, 29, 34, 35] survey articles [24, 25], and books [3, 5, 28]. It was shown
in [14] that fractional programs are in general N P -Hard. Applications arise in
location [3], economics [5], information theory [17], chemical process industry
[33, 34], production efficiency [4], stochastic programming [27], and a host of
other areas.
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Global optimization approaches to fractional programming have typically em-
ployed the following straightforward approach. Each occurrence of z = x/y is
replaced by the bilinear equality zy = x which is subsequently linearized us-
ing bilinear programming techniques [1, 15, 16]. Queseda and Grossmann [21]
developed nonlinear inequalities which, if included in the fractional program, im-
prove the tightness of such a relaxation. Their research revealed that there is a
considerable scope for improvement in the current relaxation techniques for x/y.
Zamora and Grossmann [34, 35] have since developed the concave envelope char-
acterization of x/y under the assumption that x is nonnegative and y is positive.
They also developed certain nonlinear inequalities improving the quality of the
convex underestimator of x/y under the same assumption. However, in spite of
these improvements, the convex and concave envelope characterization of x/y
over an arbitrary rectangular region is still open. In general, very few results are
available on the convex and concave envelopes of even simple nonlinear functions
(cf. [1, 26, 35]).

In Section 3, we develop the convex and concave envelope of x/y over a rectan-
gular region. We also provide a constructive proof for the nonlinear underestimat-
ing inequality developed in [34]. We develop the concave envelope of x/y over the
positive orthant using a completely different proof than that in [35]. Our approach
in this paper is based on the work of Tawarmalani et al. [31] on convex exten-
sions of lower semi-continuous functions where the authors laid down a theoretical
framework of convex extensions and explored their relations to convex envelopes.
We present a constructive argument using convex disjunctive programming tech-
niques within the framework of [31] to produce the convex and concave envelopes
of x/y over a rectangular set.

The resulting relaxation – including the envelopes of x/y – is shown to be
a semidefinite program. This addresses the issue surrounding the solvability of
the proposed relaxation, since semidefinite programs – for which an estimate of
the solution size is available a priori – are polynomially solvable using interior
point techniques developed in [2, 19] and subsequent related works. Also, coupled
with the works of [7, 13, 20], semidefinite relaxations can now be developed for
mixed integer programs with linear, polynomial, and fractional terms. A global
optimization algorithm using this relaxation scheme may then be easily constructed
along the lines of [30, 35] and shall not be detailed in this work.

The proposed techniques are not limited to the development of the convex and
concave envelopes of x/y. In Section 4, we demonstrate that they can be used
in a variety of different situations by developing convex/concave envelopes for
functions of the type

n∑
i=1

fi(x, yi ),

where yi ∈ R
ni , x ∈ R, and each fi is convex in yi and concave in x.
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2. Overview of Convex Extensions

In this section, we summarize the main results of [31]. Convex Extensions were
defined as:

DEFINITION 2.1 ([31]). Let C be a convex set and X ⊆ C. A convex extension
of a lower semicontinuous function φ : X �→ R̄ over C is any convex function
η : C �→ R̄ such that η(x) = φ(x) for all x ∈ X.

In the above, R̄ denotes the extended real line. The following result character-
izes the constructibility of convex extensions.

THEOREM 2.2 ([31]). Let C be a convex set and consider an arbitrary collection
of faces FI of C. Then, a convex extension of φ : C �→ � restricted to ∪X∈FIX can
be constructed over C if and only if φ is convex over each face X ∈ FI . Further,
the convex envelope of φ over C is one such convex extension.

The generating set GC(f ) of a function f over a set C is defined as the set of
extreme points of the epigraph of the convexified function projected on the space
of the independent variables. The following result characterizes the generating set:

THEOREM 2.3 ([31]). Let φ(x) be a lower semi-continuous function on a com-
pact convex set C. Consider a point x0 ∈ C. Then, x0 
∈ GC(φ) if and only if there
exists a convex subset X of C such that x0 ∈ X and x0 
∈ GX(φ). In particular, if
for an ε − neighbourhood Nε ⊂ C of x0, it can be shown that x0 
∈ GNε (φ), then
x0 
∈ GC(φ).

Another useful result concerns with the equivalence of convex envelopes of
multilinear functions with that of nonlinear functions restricted to the extreme
points of a hypercube. In the following, we denote the hypercube in n dimensions
as Hn and its extreme points as En.

THEOREM 2.4 ([31]). Consider a nonlinear function φ(x) : En �→ R. Let f (x)
be the tightest convex extension of φ restricted to En over Hn. Consider any multi-
linear function φ′ such that φ′(x) = φ(x) for all x ∈ En. There exists at least one
such multilinear function. Further, f (x) is the polyhedral convex envelope of φ′(x)
over Hn. If φ(x) is a multilinear function, then f (x) is its convex envelope.

In this work, we advocate to use the above results in the construction of relax-
ations of mathematical programs. The basic technique involves characterizing the
generating set of the convex envelope of the functional form, often using Theorem
2.3. The convex envelope is then viewed as the tightest convex extension of the
function restricted to the generating set (Theorem 2.2). The convex envelope can
then be derived through the use of convexification techniques as long as the gen-
erating set can be expressed as a union of a finite number of convex sets. While
developing the convex envelope over a hypercube and if the generating set turns
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Figure 1. The fractional term x/y in the positive quadrant.

out to be the extreme points, Theorem 2.4 turns out to be an extremely powerful
tool in the construction of the envelope.

3. Fractional Programs

In this section, we develop the convex and concave envelopes of x/y over a rect-
angular feasible region. In Section 3.1 and Section 3.2, we develop the concave
and convex envelope of x/y, respectively, over a rectangular region in the positive
orthant. In Section 3.3, we establish that the convex envelope is strictly tighter
than any previously known convex underestimating inequality for x/y over the
positive orthant. In Section 3.4, we relax the restriction that the feasible set be a
subset of the positive orthant. In Section 3.5, we demonstrate that the concave and
convex envelopes of x/y can be used in a semidefinite programming relaxation for
fractional programs.

3.1. CONCAVE ENVELOPE OF x/y

Consider the fractional function x/y over a rectangular subset, [xL, xU ]×[yL, yU ],
of the positive quadrant as depicted in Figure 1. Some characteristics of the func-
tion are:

− at a fixed value of y, the function is linear;
− at a fixed value of x, the function is convex.

An application of Theorem 2.3 shows that the generating set of the concave
envelope of x/y consists of the four corners of the hypercube:

G[xL,xU ]×[yL,yU ]
(
conc (x/y)

) = {xL, yL} ∪ {xL, yU } ∪ {xU , yL} ∪ {xU , yU }.
This follows from the fact that any point, apart from the corner points, can be
expressed as a convex combination of neighboring points along either the x axis
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or the y axis direction. Since the function is convex in both directions, the point in
consideration can be eliminated from further consideration and the result follows.

We now develop the concave envelope of x/y. Since the generating set consists
of a finite number of points, the concave envelope is polyhedral. A direct applica-
tion of Theorem 2.4 establishes that the bilinear function which fits the fractional
function values at the corner points of the rectangle has the same concave envelope
as x/y. Such a bilinear function can be constructed rather easily as:

1

(xU − xL)(yU − yL)
(
xL

yL
(xU − x)(yU − y)+ xL

yU
(xU − x)(y − yL)+

xU

yL
(x − xL)(yU − y)+ xU

yU
(x − xL)(y − yL)

)

and be simplified to:

−xy + xyL + xyU
yLyU

.

This function is depicted in Figure 2. Now, the development of the concave en-
velope is trivial using the McCormick envelopes [1]. Algebraically, the concave
envelope of x/y over the rectangle [xL, xU ] × [yL, yU ] is given by:

concave

(
x

y

)
= 1

yLyU
min

{
yUx − xLy + xLyL, yLx − xUy + xUyU} .

(1)

The concave envelope of x/y was shown to be given by (1) in the work of Zamora
and Grossmann [35]. The authors derived the linear inequalities in (1) by using the
following relations:(

xi

xj
− xLi

xUj

)(
xj

xLj
− 1

)
� 0

(
xUi

yLj
− xi

xj

)(
1 − xj

xUj

)
� 0,

and then verifying that the above formed the concave envelope of x/y.

3.2. CONVEX ENVELOPE OF x/y

The function x/y, as noted earlier, is concave in x for a fixed value of y. An ap-
plication of Theorem 2.3 to the convex envelope of x/y reveals that the generating
set, in this case, is a subset of the faces x = xL and x = xU . From Theorem 2.2, it
follows however that the convex envelope coincides with the function along these
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Figure 2. −xy+xyL+xyU
yLyU

.

two faces. Since xL/y and xU/y are both strictly convex functions, it follows that
all the points along the two aforementioned faces belong to the generating set of
the convex envelope:

G[xL,xU ]×[yL,yU ]
(
conv (x/y)

) = {xL, y} ∪ {xU, y}.
We now characterize the convex envelope of x/y. By applying convex disjunct-

ive programming techniques [23], the epigraph of the convex envelope of x/y may
be stated as

z � xL

ya
(1 − λ)+ xU

yb
λ

yL � ya � yU

yL � yb � yU

y = (1 − λ)ya + λyb
x = xL + (xU − xL)λ
0 � λ � 1.




(2)

Introduce yp = ya(1 − λ). Then λyb = (y − yp). After algebraic manipulations
(assuming 0 < λ < 1), (2) above may be restated as:

z � xL

yp

(
xU − x
xU − xL

)2

+ xU

y − yp
(
x − xL
xU − xL

)2

yL(xU − x) � yp(xU − xL) � yU (xU − x)
yL(x − xL) � (y − yp)(xU − xL) � yU (x − xL)




(3)
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Note that (3) is valid only when xL < x < xU , since otherwise a division by zero
occurs. As x → xL, (3) converges to the epigraph of xL/y and, when x → xU , (3)
converges to the epigraph of xU/y. However, as shall be clear later, the semidefinite
programming reformulation of (3) does not result in this instability. This issue is
resolved by the introduction of the following variable:

zp � xL

yp

(
xU − x
xU − xL

)2

.

We now get the following reformulation of (3):

(R) yp � xL

zp

(
xU − x
xU − xL

)2

yp � y − xU

z− zp
(
x − xL
xU − xL

)2

yp � max

{
yL
xU − x
xU − xL , y − yU x − xL

xU − xL
}

yp � min

{
yU
xU − x
xU − xL , y − yL x − xL

xU − xL
}

z − zp, zp � 0.

Applying Fourier-Motzkin Elimination to the above constraint set, we can elimin-
ate yp from the formulation. Note that (R) is valid even along the faces x = xL and
x = xU . The inequality of the form zy � x2 may be rewritten as

√
zy � x to make

its convexity apparent.

3.3. RELATION TO EARLIER WORKS

It is obvious that reformulation of the fractional term using (3) produces a relaxa-
tion that is tighter than that derived using any other convex underestimator of x/y.
In addition, we show that the relaxation of x/y obtained via (3) is at times strictly
tighter than the nonlinear inequality developed in [34, 35]:

z � 1

y

(
x + √

xLxU√
xL + √

xU

)2

. (4)

EXAMPLE 3.1. We construct a rather simple example where yL = yU . The feas-
ible region is just the linear segment [xL, xU ]. In this case, the function x/y is
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linear and the equations (3) describe the function exactly as follows:

z � xL

yL

(
xU − x
xU − xL

)
+ xU

yL

(
x − xL
xU − xL

)
= x

yL
. (5)

Since (4) is strictly convex and matches (5) at the end-points, x = xL and x = xU ,
(5) defines a chord of (4). Therefore, (5) lies strictly above (4) at all points except
the end-points of the interval.

Another set of nonlinear inequalities was developed by [21] for underestimating
the fractional term:

z � x

yL
+ xL

(
1

y
− 1

yL

)
(6)

z � x

yU
+ xU

(
1

y
− 1

yU

)
(7)

EXAMPLE 3.2. Let xL = yL = 1, xU = yU = 3, and x = y = 2. Then, using
(6) and (7) we get:

z � max{0.5, 0.5} = 0.5.

However, from (3), we get

z � 1

4(
√

3 − 1)
+ 3

4(1 − √
3)

≈ 0.93301.

There is something interesting that happens with the above inequalities. (6) and
(7) are exact in Example 3.1 and (4) is equal to the convex envelope in Example
3.2. We shall explain why this happens in the sequel. First, we give an example
where all the above inequalities are worse than the convex envelope.

EXAMPLE 3.3. Consider xL = 2, xU = 4, yL = 3, and yU = 3.4. At x = 3 and
y = 3.3, the convex envelope is found by solving:

z � 1

2y
+ 1

3.3 − y
1.6 � y � 1.7.

The solution occurs at y = 1.6 and generates z � 0.900735. However, using the
three inequalities above, we find that: (4) reduces to z � 0.883095, (6) reduces
to z � 0.878788, and (7) reduces to z � 0.900178. We have thus provided an
example where each of the inequalities (4), (6), and (7) lies strictly below the
convex envelope of x/y.
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The formal description of the convex envelope when xL < x < xU is:

(C) min
xL

yp

(
xU − x
xU − xL

)2

+ xU

y − yp
(
x − xL
xU − xL

)2

(8)

yL(xU − x) � yp(xU − xL) � yU (xU − x) (9)

yL(x − xL) � (y − yp)(xU − xL) � yU (x − xL). (10)

This is a single variable optimization problem in yp for a given point (x, y). It is
clear that one potential candidate for yp is determined by setting the derivative on
the objective function to zero. Then, solving the quadratic equation:

y2
px
U (x − xL)2 − (y − yp)2xL(xU − x)2 = 0,

we get the following two solutions:

yp =
√
xL(xU − x)y

(
√
xL + √

xU )(
√
xL

√
xU − x) (11)

yp =
√
xL(x − xU )y

(
√
xL − √

xU )(
√
xL

√
xU + x) . (12)

Substituting back in equation (8), we get:

z = 1

y

(
x − √

xL
√
xU√

xL − √
xU

)2

(13)

z = 1

y

(
x + √

xL
√
xU√

xL + √
xU

)2

. (14)

Relaxing = to � in (13) and (14) produces valid underestimators for x/y. This can
be seen by subtracting x/y from both sides of (13) and (14):

z − x

y
� (x − xL)(xU − x)
y(

√
xL − √

xU )2
� 0 (15)

z − x

y
� (x − xL)(xU − x)
y(

√
xL + √

xU )2
� 0. (16)

Since

(x − xL)(xU − x)
y(

√
xL − √

xU )2
� (x − xL)(xU − x)
y(

√
xL + √

xU )2
,
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(13) is dominated by (14). A more careful analysis of the KKT conditions also
shows that (11) is never feasible and hence (13) can be dropped. We carry out this
analysis. In deriving (13), we relaxed the bounds on yp. However, (13) is to be
included only if (11) is within bounds specified by (9) and (10). By assumption,
yL > 0. (9) and (10) can thus be relaxed to 0 < y < yp. It is easy to show that
when xL < x < xU , x − √

xLxU � 0 implies y > yp, and x − √
xLxU � 0

implies y > 0. At x = xL or x = xU , (11) and (12) correspond to the same point.
Therefore, (11) can be ignored.

We apply a similar analysis to (12). The result from this analysis is however
quite different. We show that (14) is the convex envelope of x/y over the positive
orthant when no additional bounds on y are known. (14) is valid only if (12) is
within bounds specified by (9) and (10) and is the minimizer in (C). (12) lies in the
interval (0, yp) for xL < x < xU . If (12) is feasible to (9) and (10), then it is the
minimizer of (C), since it is the only KKT point in a relaxation of (9) and (10) to
the open interval (0, yp). In particular, if no bounds are available on y except that
y > 0, then (14) forms the convex envelope of x/y since it is exact when x = xL

or x = xU . In other cases, (14) produces the following underestimator:

z � 1

y

(
x + √

xL
√
xU√

xL + √
xU

)2

. (17)

Note that (17) is exactly the nonlinear equation derived in [34, 35]. In [34, 35], how-
ever, Equation (17) was neither recognized as one of the participating equations in
the convex envelope of x/y nor as the convex envelope of x/y in the absence of
bounds on y. We have shown:

THEOREM 3.4. The convex envelope of x/y over [xL, xU ] × (0,∞) is given by:

z � 1

y

(
x + √

xL
√
xU√

xL + √
xU

)2

.

The only remaining possibilities are that yp is at one of its bounds in Equations
(9) and (10). Using these bounds, we get the following inequality:

z � min

{
xyxL − x2yL + xLxU (yL − y)
yL(xLy − xUy + xyL + xUyL),
xyxL − x2yU + xLxU (yU − y)
yU (xLy − xUy + xyU + xUyU),

(18)
xyxU − x2yL + xLxU(yL − y)
yL(−xLy + xUy + xyL + xLyL),
xyxU − x2yU + xLxU (yU − y)
yL(−xLy + xUy + xyU + xLyU )

}
.
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Figure 3. x/y when 0 ∈ [xL, xU ].

Note that, if x = xL(1−λ)+xU(λ) and y is greater (less) than yL(1−λ)+yU(λ),
the first (fourth) term above should be ignored, since it was derived using a value
of yp outside the bound constraints (9)

(
(10)

)
. Similarly, if y is greater (less) than

yLλ + yU (1 − λ), the third (second) term should be ignored. A disjunction of
this sort cannot be introduced in a mathematical program and hence we will have
to resort to the formulation (R) for purposes of constructing the convex relaxa-
tion. Nevertheless, if we use a convex programming solver, like MINOS [18] and
SNOPT [8], which uses black-box optimization, in the sense that we are required
to provide just the function and gradient values at a prespecified point, then the
above description of the convex envelope is sufficient.

EXAMPLE 3.5. Returning to Example 3.3 with xL = 2, xU = 4, yL = 3, yU =
3.4, x = 3, and y = 3.3, only the second and fourth terms in (18) need to be
considered, Hence, z � min{0.919118, 0.900735} = 0.900735 resulting in the
same bound as derived using the direct computation with (3).

Since (17) and (18) include all possible solutions of yp in (C), it is clear that
(17) along with (18) with appropriately chosen terms form the convex envelope of
the fractional function.

3.4. RELAXING THE POSITIVITY REQUIREMENT

In this subsection, we relax the assumption that x and y belong to the positive or-
thant and develop the convex and concave envelopes of x/y as long as 0 
∈ [yL, yU ]
(see Figure 3). To accomplish this, we must derive the convex and concave envel-
opes of x/y when 0 ∈ [xL, xU ] and yL > 0. The development of any one of the



148 MOHIT TAWARMALANI AND NIKOLAOS V. SAHINIDIS

convex or concave envelope is adequate, since the other is developed in an identical
fashion by substituting u = −x. Therefore, without loss of generality, we restrict
our attention to the convex envelope characterization.

The function x/y is linear in x for a fixed value of y. Therefore, the generating
set of the convex envelope is a subset of the faces x = xL and x = xU . Further,
x/y is concave when x = xL. Therefore, the generating set can be written as the
following union:

(xL, yL) ∪ (xL, yU ) ∪ {(xU , y) | yL � y � yU
}
.

Note that the generating set is written as a union of three convex sets. We could
convexify the function either over all the three sets together or sequentially in two
steps. In the present case, we prefer to do this sequentially. We first convexify x/y
over x = xL and use the convexified function to develop the convex envelope of
x/y over [xL, xU ]×[yL, yU ]. Since the function is concave over x = xL, its convex
envelope can be developed easily as:

xL(yL + yU − y)
yLyU

.

Now the convex envelope of x/y is given by:

z � xL(yL + yU − ya)
yLyU

(1 − λ)+ xU

yb
λ

yL � ya � yU

yL � yb � yU

y = (1 − λ)ya + λyb
x = xL + (xU − xL)λ
0 � λ � 1.

Substituting yp = ya(1 − λ), y − yp = λyb, and λ = (x − xL)/(xU − xL) we get:

zp �
xL
(
xLyp − x(yL + yU )+ xU (yL − yp + yU))

(xU − xL)yLyU
(z − zp)(y − yp)(xU − xL)2 � xU (x − xL)2

yL(xU − x) � yp(xU − xL) � yU (xU − x)
yL(x − xL) � (y − yp)(xU − xL) � yU (x − xL)
z − z1, z1 � 0.




(19)

We have developed the convex and concave envelopes of x/y as long as y 
=
0. This assumption is not restrictive. As y approaches zero from above (below)
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the function takes arbitrarily large (small) values forcing the concave (convex)
envelope to infinity (-infinity) and the function is not well defined at y = 0.

3.5. SEMIDEFINITE RELAXATION OF x/y

We now show that nonlinear convex constraints in (R) can be represented as linear
matrix inequalities using the Schur complement [32]. We denote the matrix inequal-
ity expressing positive semi-definiteness of A, as A � 0. Consider the following
matrix inequality:

A =
(
yp(x

U − xL)2 √
xL(xU − x)√

xL(xU − x) zp

)
� 0. (20)

This inequality expresses the equation

zpyp(x
U − xL)2 − xL(xU − x)2 � 0,

since yp(xU − xL)2 � 0 and zp � 0. Similarly,

B =
(
(y − yp)(xU − xL)2 √

xU (x − xL)√
xU (x − xL) z − zp

)
(21)

The above inequality expresses the equation

(z − zp)(y − yp)(xU − xL)2 − xU (x − xL)2 � 0,

since (y − yp)(x
U − xL)2 � 0 and z � zp. The following expresses the lower

bound on yp:

C =



yp − yL x

U − x
xU − xL

yp − y + yU x − xL
xU − xL


 � 0. (22)

The equation below expresses the upper bound on yp:

D =

yU

xU − x
xU − xL − yp

y − yp − yL x − xL
xU − xL


 � 0. (23)

Cumulatively, the SDP relaxation of x/y may be expressed as:

A

B

C

D


 � 0. (24)
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The semidefinite relaxation of x/y described above is second-order cone repres-
entable. Using the equivalence [12]:

yz � x2, y � 0, z � 0 ⇐⇒
∥∥∥∥
(

2x
y − z

)∥∥∥∥ � y + z (25)

the second-order cone representation can be obtained as:∥∥∥∥∥
(

2(1 − λ)√xL
zp − yp

)∥∥∥∥∥ � zp + yp∥∥∥∥∥
(

2λ
√
xU

z − zp − y + yp
)∥∥∥∥∥ � z− zp + y − yp

yp � yL(1 − λ), yp � y − yUλ
(26)

yp � yU (1 − λ), yp � y − yLλ
x = xL + (xU − xL)λ
zp, u, v � 0, zc − zp � 0

0 � λ � 1.

Using an almost identical procedure, it is easy to show that (19) can also be
transformed into a semidefinite program using Schur Complements or into second-
order cone program using (25). We have thus shown that fractional programs can be
relaxed using semidefinite relaxations. Coupled with similar results for indefinite
quadratic programs [7, 9], our result provides a systematic means for constructing
semidefinite relaxations for general factorable programs.

3.6. ENVELOPES OF (ax + by)/(cx + dy)
Consider the function f (x, y) = (ax+ by)/(cx + dy) over a rectangle [xL, xU ]×
[yL, yU ] in the positive orthant. We assume that a, b, c, and d are non-negative
constants and at least one of c and y is strictly positive. In this sense, the function
f (x, y) is a slight generalization of x/y as seen by setting b = c = 0 and a =
d = 1. We develop the convex envelope of f (x, y) in this section. The concave
envelope can be easily developed by a similar treatment.

The case ad = bc is trivial since the function is either a constant or undefined.
Without loss of generality, we assume ad > bc. Note that f (x, y0) is concave for
a fixed y0 > 0. When c = 0, the result is obvious. Otherwise, the concavity of
f (x, y0) follows from the following identity:

ax + by0

cx + dy0
= a

c
− 1

c

(
(ad − bc)y0

cx + dy0

)
.
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For any fixed x0, f (x0, y) is convex since:

ax0 + by
cx0 + dy = b

d
+ 1

d

(
(ad − bc)x0

cx0 + dy
)

(27)

and ad > bc, d > 0 and cx0 + dy > 0. The epigraph of the convex envelope of
f (x, y) is thus expressible as the convex hull of A ∪ B where

A = {
(za, x

L, ya)
∣∣ za � f (xL, ya), yL � ya � yU

}
and

B = {
(zb, x

U , yb)
∣∣ zb � f (xU , yb), yL � yb � yU

}
.

We denote a point in the epigraph of the convex envelope of f (x, y) by (z, x, y).
Introducing λ = (x − xL)/(xU − xL), yp = ya(1 − λ), and zp = za(1 − λ), the
epigraph of the convex envelope of f (x, y) can be written as:

dzp(cx
L(1 − λ)+ dyp) = (ad − bc)xL(1 − λ)2

(dz − b − dzp)(cxUλ+ dy − dyp) = (ad − bc)xUλ2

yp � max
{
yL(1 − λ), y − yUλ}

yp � min
{
yU(1 − λ), y − yLλ}

x = xL + (xU − xL)λ
zp, u, v � 0, z − zp � b/d

0 � λ � 1




(28)

using a procedure similar to that described in Section 3.2. A second-order cone
representation of (28) is easily derived using (25). Analyzing the KKT conditions
as in Section 3.3, the following convex underestimating inequality is derived:

f (x, y) � (ad − bc)(x + √
xL

√
xU )2

d(
√
xL + √

xU)2(cx + dy) + b

d
(29)

and shown to be the convex envelope of f (x, y) over [xL, xU ] × (0,∞).

4. Generalizations

The techniques presented in this paper are fairly general and find applications in
developing convex/concave envelopes in a wide variety of situations. We illustrate
this by developing convex/concave envelopes of f (x, y) where f is lower semi-
continuous concave in x and convex in y. It may be pointed out that we do not
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assume that y is a scalar. The generating set of the convex envelope of f over a
rectangular region is then the set of faces: x = xL and x = xU . By disjunctive
programming techniques, the convex envelope is given by:

z � f (xL, ya)(1 − λ)+ f (xU , yb)λ
yL � ya � yU

yL � yb � yU

y = (1 − λ)ya + λyb
x = xL + (xU − xL)λ
0 � λ � 1.




(30)

In a similar vein to [23], we define a positively homogeneous function g associated
with f (·, y) by the following relation:

g(·, λ, y) =




λf (·, λ−1y) λ > 0

0 λ = 0, and y = 0

+∞ λ = 0, and y 
= 0.

Since the epigraph of g is convex, g is jointly convex in λ and y. Also, it follows
from Theorem 8.2 in [23] that g is closed if f is bounded in the space under con-
sideration. Introduce the variable yp = ya(1 − λ). After algebraic manipulations,
we get the following form of (30):

z � g
(
xL,

xU − x
xU − xL , yp

)
+ g

(
xU,

x − xL
xU − xL , y − yp

)

yL(xU − x) � yp(xU − xL) � yU (xU − x)
yL(x − xL) � (y − yp)(xU − xL) � yU (x − xL).




(31)

Therefore, whenever there is a way to write the mathematical formulation of g,
the convex envelope of f (x, y) can be developed as (31). It is possible to gener-
alize the above to the case when x is a vector. However, the generalization is not
only unnecessary but restrictive since the same effect is achieved by convexifying
the function sequentially using the x variables one at a time. Generalizations to
Cartesian products of polytopes (instead of a hypercube) as the feasible space can
be easily accomplished. However, such an application does not serve to clarify the
proposed concepts any further than already achieved through the previous example.



RELAXATIONS OF FRACTIONAL PROGRAMS VIA NOVEL CONVEXIFICATION 153

4.1. CONVEX ENVELOPE OF f (x)y2

We consider the function f (x)y2 over a rectangular region. We assume that f (x) �
0 over the feasible region. We provide an illustration of x0.8y2 when 0 � x � 1,
−1 � y � 1 in Figure 4. We assume that f is a concave function of x. Then,
the function is convex in y and concave in x. Using (31), the convex envelope is
expressed as:

min g1 + g2

g1(x
U − x) � f (xL)y2

p(x
U − xL)

g2(x − xL) � f (xU )(y − yp)2(xU − xL)
yL(xU − x) � yp(xU − xL) � yU (xU − x)
yL(x − xL) � (y − yp)(xU − xL) � yU (x − xL)
g1, g2 � 0.




(32)

The various candidates for the solution are found by setting the derivative of g1+g2

to zero and setting yp to one of the bounds. The first candidate is found by solving

2f (xL)yp
xU − xL
xU − x − 2f (xU )(y − yp)x

U − xL
x − xL = 0.

The resulting solution is

yp = f (xU )(x − xU )y
(x − xL)f (xL)+ (x − xU )f (xU ).

Then:

z � min

{
(xL − xU )y2f (xL)f (xU )

(
(xL − x)f (xL)+ (x − xU )f (xU ))(

(x − xL)f (xL)+ (x − xU )f (xU ))2 ,

(x − xU)(yU )2f (xL)
(xL − xU ) − (xLy − xyU − xUy + xUyU )2f (xU )

(x − xL)(xL − xU ) ,

(x − xU)(yL)2f (xL)
(xL − xU ) − (xLy − xyL − xUy + xUyL)2f (xU )

(x − xL)(xL − xU) ,

(xUy − xyL − xLy + xLyL)2f (xL)
(x − xU )(xL − xU) + (x − xL)(yL)2f (xU )

(xU − xL) ,

(xUy − xyU − xLy + xLyU )2f (xL)
(x − xU )(xL − xU ) + (x − xL)(yU )2f (xU)

(xU − xL)
}
.

(33)
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Figure 4. x0.8y2.

Note that, at any given point, out of the five terms only those should be considered
which were derived with yp within the bounds in (32). We now investigate the
functions xay2, 0 < a < 1 (see Figure 4) and log10(9x + 1)y2 (see Figure 5) when
xL = 0, xU = 1, yL = −1, yU = −1. In this case, (33) reduces to:

z =




0 x = 0

0 y + x � 1 and y � 0

(x + y − 1)2/x y + x � 1 and x 
= 0

0 y − x � 1 and y < 0

(1 − x + y)2/x x − y � 1 and x 
= 0.

As in Section 3.4, the assumption that f (x) � 0 can be relaxed. All that is needed
is that we convexify the function f (x)y2 over x = xL if f (xL) � 0 and over
x = xU if f (xU ) � 0. It is easy to see that the relaxation (32) can be transformed
to linear matrix inequalities and therefore included in a semidefinite relaxation of
f (x)y2.

4.2. CONVEX ENVELOPE OF f (x)/y

In this section, we consider a slightly more general form of the fractional function
x/y. We assume that y > 0 and f (x) is a concave function of x. Even though
we could follow the same construction as in Section 4.1, we shall make use of the
convex envelope of the fractional function to develop the convex envelope. This is
a simple technique which may be used in more general settings and we use it in
this context to illustrate its use. Since the generating set of this function is the same
as that of x/y, the following function has the same convex envelope as f (x)/y:

1

y

(
f (xL)

xU − x
xU − xL + f (xU) x − xL

xU − xL
)
,
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Figure 5. log10(9x + 1)y2.

Figure 6. Convex Envelope of x0.8y2.

which in turn can be generated knowing the convex envelope of x/y. This proced-
ure is equivalent to introducing a variable f as f � f (x) and then relaxing the
inequality using the convex envelope of f (x) to get the following:

f �
(
f (xL)

xU − x
xU − xL + f (xU ) x − xL

xU − xL
)
.

It is clear that the relaxations developed in this case can also be transformed in
a semidefinite program.

4.3. SUMMATION OF FUNCTIONS

The following result appears in [22] in a slightly different form:

THEOREM 4.1 ([22]). Consider a hypercube P = H 1+∑n
i=1 ni . Let x ∈ R and yi ∈

R
ni . Assume fi(x, yi ) is a continuous function for each i ∈ {1, . . . , n}. Assume
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further that each fi(x, yi ) is concave in x. Then:

convex P

(
n∑
i=1

fi(x, yi )

)
=

n∑
i=1

convex P fi(x, yi ).

In Section 4, we developed the convex envelope of each of the functions fi(x, yi ),
under the additional assumption that fi(x, yi ) is convex in yi . Note that if this
assumption is not satisfied we could in principle convexify along the function in
the yi space before proceeding. It follows directly from Theorem 4.1 that using the
techniques presented in this paper, we can develop the convex envelope of functions
of the form:

n∑
i=1

fi(x, yi )

given that each fi(x, yi ) is concave in x and convex in yi . Quite a few functions
fall into this category. As an example, consider

f (x)

n∑
i=1

k∑
j=−p

aij y
j

i

where f is a concave function, aij > 0 for i = 1, . . . , n; j = −p, . . . , k and
yi > 0.

5. Conclusions

The purpose of this paper has been to demonstrate that convex extensions can be
used to develop convex envelopes and, in general, convex relaxations of nonlinear
nonconvex programs. Using this tool, we have developed a semidefinite program-
ming relaxation for fractional programming problems. As a result, new algorithms
may be developed for factorable nonlinear programming problems incorporating
these relaxations and solving semidefinite programs instead of the traditional linear
programming relaxations. Since the use of semidefinite programming relaxations
in branch and bound codes is an ongoing research area, we shall not dwell on it
more. Further, this relaxation strategy may prove useful in developing approxima-
tion algorithms for fractional programs.
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